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Abstract

A study is made of the spin-up of a viscous non-Boussinesq fluid in a vertically mounted cylinder. The density (q) of the fluid
becomes maximum at temperature Tm, and a quadratic density–temperature relation is used. The fluid is stratified by imposing a

vertical temperature contrast, with the temperature at the bottom endwall disk being Tm. Comprehensive numerical solutions to the
time-dependent Navier–Stokes equations are acquired. Due to the vertically non-uniform stratification, spin-up proceeds faster near

the bottom endwall than near the top endwall. The meridional circulation is more intense near the bottom endwall. Detailed de-

scriptions of evolutions of both azimuthal and meridional flows are given. Major differences in dynamic characteristics are illus-

trated between a homogeneous fluid, a Boussinesq fluid, and the present non-Boussinesq fluid which has a density maximum. � 2002

Elsevier Science Inc. All rights reserved.

1. Introduction

Spin-up refers to the transient adjustment of an en-
closed fluid from a state of solid-body rotation, subject
to a change in rotation rate of the container. Specifi-
cally, a closed cylinder [radius R and height H, aspect
ratio H=R � Oð1Þ], filled with a viscous incompressible
fluid and rotating steadily about its axis at angular ve-
locity Xi, is considered. At the initial instant t ¼ 0 the
angular velocity of the container is abruptly increased to
Xf ½� Xi þ DX; e � DX=Xi�, and the task is to describe
the transient response of the fluid.

The classical treatise of Greenspan and Howard
(1963) carried out a linearized analysis for the case e 	 1
of a homogeneous fluid. The important non-dimen-
sional parameter is the Ekman number E ½� 4m=XiH 2�,
in which m denotes the kinematic viscosity of fluid. In
most technological applications, E 	 1, which implies
that direct effects of viscosity are confined to the
boundary layers near the solid walls. It was demon-
strated that the main dynamical element is the merid-

ional circulation, which is driven by the suction of
Ekman boundary layers at the endwall disks. In the
inviscid interior, angular momentum is conserved, and
the radially inward meridional circulation effectuates the
increase of angular velocity at a given location. There-
fore, the overall fluid adjustment to the altered rotation
rate of the container is substantially accomplished over
the spin-up timescale OðE
1=2X
1

i Þ, which is order-of-
magnitude smaller than the diffusive timescale
OðE
1X
1

i Þ. For a homogeneous fluid, the evolution of
angular velocities in the interior is uniform in the axial
direction. The essentials of the model of Greenspan and
Howard have now been firmly established (Warn-Var-
nas et al., 1978; Dolzhanskii et al., 1992).

Spin-up of a stably stratified fluid in a vertically
mounted cylinder, the sidewall of which is insulated,
brings forth an additional dynamical element (Walin,
1969; Sakurai, 1969). The Ekman-layer suction is still
present, but, due to the inhibition of vertical velocities
by stratification, the penetration of meridional circula-
tion is limited to the interior regions close to the endwall
disks. Spin-up proceeds in a spatially non-uniform
manner in the interior, and the overall rate of change of
angular velocity in the interior is slower than for the
homogeneous fluid. These qualitative findings for the
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case of a stratified fluid carry significant implications in
geophysical and industrial applications.

In the numerical and experimental programs on
stratified spin-up (Sakurai, 1969; Hyun et al., 1982), the
customary Boussinesq-fluid assumption has been in-
voked, i.e.,

q ¼ qB 1½ 
 a Tð 
 TBÞ�; ð1Þ
in which the linear density (q) – temperature (T) relation
is postulated. In the above, subscript B refers to the
reference value, and a the coefficient of thermometric
expansion. The linear q–T relation of Eq. (1), however,
is not applicable to certain liquids in the neighborhood
of a specific temperature Tm at which density reaches a
maximum qm. The best known example is water, which
has maximum density qm at Tm ¼ 3:98 �C . This non-
linear q–T behavior calls for a new dynamical consid-
eration in the discussion of buoyancy-related
convections. A substantial body of literature exists on
the behavior of a non-Boussinesq fluid in a non-rotating
environment (Robillard and Vasseur, 1982; Braga and
Viskanta, 1992; Nishimura et al., 1995; Kwak et al.,
1998), but published works are scarce on rotating flows
of fluid near its density maximum.

The present paper intends to address the spin-up
process in a cylinder of a fluid with a density maximum.
In the present endeavor, such a fluid will be referred to
as a density-maximum fluid. For definiteness, the tem-
perature at the bottom endwall disk is TB ½¼ Tm�, the
temperature of maximum density, and the temperature
at the top endwall disk TT is higher than Tm, i.e.,
DT � TT 
 TB > 0. Numerical solutions to the governing
Navier–Stokes equations are secured, and emphasis will
be placed on delineating the differences in the transient
flow characteristics between a usual Boussinesq-fluid
and a density-maximum fluid of present concern.

2. Formulation

As remarked earlier, the (q)–(T) relationship near Tm
of a density-maximum fluid is modeled by a parabolic
function (Moore and Weiss, 1973):

q ¼ qm 1
�


 b T
�


 Tm
�2k

: ð2Þ

In the case of water, the error associated with Eq. (2),
with b ¼ 8:0� 10
6 ð�CÞ
2, Tm ¼ 3:98 �C, is smaller
than 4% in the range from 0 to 8 �C. In the present
problem setting, the entire temperature range is assumed
to lie within the bound in which Eq. (2) is valid. The
other thermophysical properties of the fluid are taken to
be constant at Tm (Robillard and Vasseur, 1982; Kwak
et al., 1998).

At the initial state, both the cylinder and fluid ro-
tate steadily at the rotation rate Xi. With DT ½� TT

TB� > 0, with TB ¼ Tm, a stable stratification prevails.

The geometrical layout, together with the boundary
conditions, is sketched in Fig. 1.

The governing non-dimensional time-dependent axi-
symmetric Navier–Stokes equations, written in the cy-
lindrical frame (r;/; z) rotating at Xi with corresponding
velocity components (u; v;w), are

1

r
oðruÞ
or

þ ow
oz

¼ 0; ð3aÞ

ou
ot

þ u
ou
or

þ w
ou
oz


 2
�

þ v
r

�
v

¼ 
 op
or

þ E
4

r2u
�


 u
r2

�
; ð3bÞ

ov
ot

þ u
ov
or

þ w
ov
oz

þ 2
�

þ v
r

�
u ¼ E

4
r2v
h


 v
r2

i
; ð3cÞ

ow
ot

þ u
ow
or

þ w
ow
oz

¼ 
 op
oz

þ E
4
r2wþ SNh2; ð3dÞ

oh
ot

þ u
oh
or

þ w
oh
oz

¼ E
4Pr

r2h; ð3eÞ

where

r2 ¼ o

ror
r
o

or

� �
þ o2

oz2
:

In the above, non-dimensionalization was performed
by adopting H , HXi, and qmðHXiÞ2 as scales for length,
velocity and pressure, respectively. The non-dimensional
temperature h is defined as h � ðT 
 TmÞ=ðTT 
 TmÞ. The
Prandtl number Pr b� m=jc, where j is the thermal
diffusivity of fluid, is assumed as Oð1Þ; the stratification

Fig. 1. Flow layout and coordinate system.
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number SN ½� bgðTT 
 TmÞ2=HX2
i � represents the overall

buoyancy effect relative to the effect of rotation. For
comparison purposes, for a Boussinesq fluid of Eq. (1),
the last term of Eq. (3d), SNh2, should be replaced by
SBh, in which SB � ½agðTT 
 TmÞ=HX2

i �. Both SN and SB
may be recast as ½gðDq=qBÞ=HX2

i �, in which Dq=qB
represents the density difference between the bottom and
top endwall disks, relative to the reference value at the
bottom disk.

As stated earlier, at the initial state, the fluid is mo-
tionless with a vertically linear temperature profile:

u ¼ v ¼ w ¼ 0;
oh
oz

¼ 1 at t ¼ 0: ð4Þ

It is noted that, because of the quadratic q–T relation,
the vertical distribution of density is not linear.

The boundary conditions, which reflect the abrupt
change in rotation rate of the cylinder from Xi to
Xið1þ eÞ, are expressed as

u ¼ w ¼ 0; v ¼ re; h ¼ 0 at z ¼ 0;

u ¼ w ¼ 0; v ¼ re; h ¼ 1 at z ¼ 1;

u ¼ w ¼ 0; v ¼ R
H

e;
oh
or

¼ 0 at r ¼ R=H ;

u ¼ v ¼ ow
or

¼ 0;
oh
or

¼ 0 at r ! 0:

ð5Þ

A point to be addressed here is the assumption of
axisymmetry of flow. The preceding studies on linear
stratified spin-up indicated that, when the Rossby
number is small eK 0:2, the flow is axisymmetric to a
high degree of accuracy. The laboratory experiments of
Buzyna and Veronis (1971), Saunders and Beardsley
(1975) and numerical computations of Barcilon et al.
(1975) consistently demonstrated the flow axisymmetry
for 10
4KEK 10
3, eK 0:2, and stratification number
Oð1Þ. The early theoretical accounts of Walin (1969) and
Sakurai (1969) on linear stratified spin-up also invoked
the assumption of flow axisymmetry. It is mentioned
that, in the case of nonlinear spin-up from rest of a
stratified fluid in a cylinder, the exploratory experiment
of Greenspan (1980) showed that the flow is axisym-
metric until moderate times and non-axisymmetry sets
in in the later stages.

As stated previously, this paper aims to depict the
linear spin-up flows of a stratified fluid from an estab-
lished rigid-body rotation. In view of the aforesaid ex-
perimental observations, it is reasonable to treat
axisymmetric flows in the present parameter range. In
addition, it is emphasized that the present axisymmetric
flows serve as the basic-state. A formal stability analysis
can be performed to determine the onset of non-axi-
symmetry by perturbing this axisymmetric basic-state
flows. In a related problem formulation, descriptions of
the basic-state axisymmetric flow and of its stability
property due to centrifugal forces were attempted re-
cently (e.g., Park and Hyun, 2001). In their endeavors, a

portrayal of the axisymmetric flow constitutes the first
step toward the analysis of more realistic situations.

The numerical solution procedure is based on the
widely used SIMPLER algorithm (Patankar, 1980), to-
gether with the QUICK scheme (Hayase et al., 1992).
The mesh was stretched to cluster grid points near the
boundaries of the computational domain. At least five
grid points were placed inside the Ekman layer. Most of
the calculations were conducted by deploying a network
of ð61� 81Þ staggered grid points in the (r–z) plane. The
computational time increment was typically Dt ¼ 0:01.
Convergence was declared when the maximum relative
difference between successive iteration levels fell below
10
6. Extensive grid- and time step-convergence tests
were carried out by repeating calculations of a large
number of previously documented exemplary cases
(Warn-Varnas et al., 1978; Hyun et al., 1982). The
outcome was highly mutually consistent. The difference
between the results based on the ð61� 81Þ and
ð91� 121Þ networks was shown to be less than 0.1%.
Time stepping was based on an implicit scheme with
first-order accuracy in (Dt).

3. Results and discussion

Numerical results are now analyzed. Attention was
focused on the qualitative changes in flow characteristics
as the stratification number SN is altered. For all the
results reported here, Pr was set to be Pr ¼ 11:573,
which simulates water at T ¼ 3:98 �C, and H=R ¼ 1:0.
The Rossby number e and Ekman number E were fixed
at very small values, 0.01 and 4� 10
4, respectively, to
compare with the linear spin-up results for a Boussinesq
fluid (Walin, 1969; Sakurai, 1969; Hyun et al., 1982).

An exemplary set is displayed in Fig. 2, which shows
the progress of spin-up at different depths on the mid-
radius (r ¼ 1

2
R=H ). The azimuthal velocity v is normal-

ized by re. Time is scaled by using the homogeneous
spin-up timescale E
1=2, which was ascertained in the
classical analysis of Greenspan and Howard (1963). Fig.
2(a) exhibits the case of a homogenous-fluid spin-up.
Clearly, the rate of increase of the scaled angular velocity
v=re is fairly uniform in the vertical direction. In the
interior region, i.e., the region far from the solid walls of
cylindrical container, the dominant mechanism of spin-
up process for a homogeneous fluid is inviscid in nature,
and angular momentum is conserved. As elucidated by
Greenspan and Howard, the suctions of Ekman
boundary layers at both endwall disks induce radially
inward meridional circulation in the interior. The an-
gular velocity of a fluid parcel moving radially inward
increases with time as the radial arm shortens. In the case
of a homogeneous fluid, this radially inward flow is
vertically uniform in the interior and, therefore, the spin-
up process is vertically uniform. Fig. 2(b) exemplifies the
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spin-up process of a stratified, Boussinesq fluid
ðSB ¼ 10Þ. The rate of increase of v=re is slower than for
a homogeneous fluid. Since the prevailing stratification is
uniform throughout the cylinder, v=re is symmetric
about the mid-height (z ¼ 0:5). [In Fig. 2(b), the curves
for z ¼ 0:25 and z ¼ 0:75 overlap.] Here, v=re at mid-
height (z ¼ 0:5) is smaller than at z ¼ 0:25. This feature is
explained by noting that, in the case of a stratified,
Boussinesq fluid, the vertical motion is restricted by the
stabilizing density stratification, and, therefore, the me-
ridional circulation is restricted to the vicinities of the
endwalls. The case of a stratified, density-maximum fluid
(SN ¼ 10) is demonstrated in Fig. 2(c). The value of v=re
at z ¼ 0:25 is larger than those at z ¼ 0:5 and at z ¼ 0:75.
Recall that, due to the quadratic (q–T ) relationship of
Eq. (2), density stratification in the cylinder increases
with height. Near the bottom endwall, the meridional
circulation is intense, and the spin-up proceeds at a faster
rate. Near the top endwall, the meridional circulation is
weaker than near the bottom endwall, because density
stratification is stronger, and, consequently, spin-up
proceeds at a slower rate. At the mid-height, penetration
of meridional circulation from both endwalls is meager
due to the presence of stable stratification. The rate of
spin-up, therefore, is slowest in the mid-height region.

In conjunction with the depiction of evolutions of
azimuthal velocity v, it is useful to monitor the time-
dependent meridional flow patterns. Here, the merid-
ional stream function w is defined such that
u ¼ ð1=rÞðow=ozÞ and w ¼ 
ð1=rÞðow=orÞ. As succinctly
captured in the conceptual model of Greenspan and
Howard (1963), the meridional flows undergo distinctive
stages. Within the rotational timescale of OðX
1

i Þ, the
Ekman layers form and, throughout the major adjust-
ment phase of timescale OðE
1=2X
1

i Þ, the Ekman layers
are thought to have been established instantaneously.
The Ekman pumping is vigorous at small times, which
pushes the meridional circulations toward the mid-
height regions. As the interior fluid is spun up, the dif-
ference in rotation rate between the interior fluid and the
endwall is reduced. This points to attenuated Ekman
layer pumping at intermediate and large times. As the
fluid system approaches the new steady state, the Ekman
pumping weakens further and the meridional flows di-
minish. These qualitative evolutionary features are dis-
cernible in Fig. 3, and the effects of stratification, both
for Boussinesq and density-maximum fluids, are clearly
illustrated. For a homogeneous fluid [see column (a) of
Fig. 3], the meridional circulations, which are anti-
symmetric with respect to the mid-height (z ¼ 0:5), fill

(a) (b)

(c)

Fig. 2. Evolution of normalized azimuthal velocity, v=re at mid-radius, r ¼ 0:5R=H . (a) Homogeneous fluid; (b) Boussinesq fluid (SB ¼ 10:0);
(c) density-maximum fluid (SN ¼ 10:0). Vertical locations are: (–––) z ¼ 0:25; (– � �–) z ¼ 0:5; (–––) z ¼ 0:75.
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much of the entire cylinder. In the top (bottom) region
of the cylinder, a clockwise (counter-clockwise) merid-
ional circulation cell forms. This arises by the Ekman-
layer suction of fluid toward the disk in the central axial

region. In the bulk of interior core, the radially inward
meridional motions are substantially uniform in the
axial direction. Since the angular momentum is con-
served in the interior, the azimuthal velocity increases as
the radial arm of a fluid particle is reduced. In the case
of a Boussinesq fluid, stratification is uniform; therefore,
the meridional motions are still anti-symmetric about
the mid-height (z ¼ 0:5). However, the prevailing strat-
ification inhibits vertical motions, which causes the
meridional circulations to be concentrated in the regions
close to the endwalls. As is evident in the center-column
plots of Fig. 3, meridional motions are less intense in the
mid-height region. These are reflected in an axially non-
uniform rate of spin-up, and spin-up is retarded most in
mid-height regions. These observations are consistent
with the evolutions of v-velocity displayed in Fig. 2. The
right column of Fig. 3 exhibits the sequential pictures of
meridional flows for a density-maximum fluid. Since the
prevailing stratification increases with height, the degree
of inhibition of vertical motions becomes more effective
in the top regions of the cylinder. Consequently, at in-
termediate and large times, the degree of attenuation of
the clockwise (counter-clockwise) circulating meridional
cell near the top (bottom) endwall disk is comparatively
more (less) effective. The breakup of this symmetry is
attributable to the axially non-uniform distribution of
prevailing stratification, which stems from the nonlinear
q–T relationship of a density-maximum fluid. As dis-
played in Fig. 2, the spin-up of fluid in the bottom re-
gion (e.g., at z ¼ 0:25) proceeds faster than in the top
region (e.g., at z ¼ 0:75).

The behavior of meridional flow, as influenced by
stratification, can further be appreciated in the z-varia-
tion plots of u and w of Fig. 4. For a homogeneous fluid,
large radially outward flows exist in the Ekman
boundary layers, and in the interior, radially inward
motions are seen, and these are fairly uniform in the
axial direction. The axial flows are anti-symmetric about

Fig. 4. Vertical distribution of u and w at mid-radius, r ¼ 0:5R=H , tE1=2 ¼ 0:8. (–––) homogeneous fluid; (–––) Boussinesq fluid (SB ¼ 10); (– � �–)
density-maximum fluid (SN ¼ 10).

Fig. 3. Sequential plots of meridional stream function w. (a) Homo-
geneous fluid; (b) Boussinesq fluid, SB ¼ 7:0; (c) density-maximum

fluid, SN ¼ 7:0.
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mid-height. For a Boussinesq fluid, the anti-symmetry of
w about mid-height is largely preserved. Inhibition of w
in much of the cylinder is visible. In the case of a den-
sity-maximum fluid, the suppression of w is pronounced
in the top region of the cylinder. In the bottom region,
the inhibition of w is less ostensible due to the relatively
weak stratification in this region. These observations
reinforce the prior physical interpretations of Figs. 2
and 3.

For a density-maximum fluid, Fig. 5 illustrates the
impact of the strength of overall stratification on the
rate of spin-up. As remarked previously, spin-up pro-
ceeds in axial uniformity for a homogeneous fluid [see
curves for SN ¼ 0]. The retardation of spin-up by the
introduction of stratification is more pronounced in the
top region of the cavity. This is in line with the preceding
assertion that, for a given value of SN, stratification is
stronger in the top region, which gives rise to a further
suppression of meridional motions in this region. The
results in Fig. 5 demonstrate that spin-up, in terms of v,
is affected less in the bottom region of the cylinder when
stratification is imposed.

In view of the spatial non-uniformity of spin-up, it is
useful to measure the global rate of spin-up for the en-
tire fluid in the cavity. The volume-averaged angular
velocity X is introduced for this purpose:

X ¼ 2
H
R

� �2 Z 1

0

Z R=H

0

v
r

� �
rdrdz: ð6Þ

Comparisons are made in Fig. 6 to gauge the evolutions
of X. Obviously, the overall spin-up proceeds fastest for
a homogeneous fluid. It is noted that, for the same
overall strength of stratification, X is larger for a den-
sity-maximum fluid than for a Boussinesq fluid. This is
due to the non-uniform distribution of prevailing strat-
ification for a density-maximum fluid, in which the
suppression of meridional motions is comparatively less
severe in the bottom region of the cavity.

By replotting the numerical results of X, the spin-up
time ss, normalized by the homogeneous-fluid spin-up

time E
1=2, is shown in Fig. 7. Here, ss is defined to be
the time at which the global spin-up is achieved to be e
1

of the final-state value. Expectedly, the spin-up time ss

Fig. 5. Effects of stratification on the evolution of v=re, r ¼ 0:5R=H : (a) z ¼ 0:25; (b) z ¼ 0:75. (–––) SN ¼ 0; (–––) SN ¼ 3:0; (– � �–) SN ¼ 7:0.

Fig. 6. Time evolution of the volume-averaged angular velocity X.
(–––) Homogeneous fluid; (–––) Boussinesq fluid (SB ¼ 10); (– � �–)
density-maximum fluid (SN ¼ 10).

Fig. 7. Spin-up time ss. S stands for the stratification number.

(j) Boussinesq fluid; (d) density-maximum fluid.
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increases with the imposed stratification, and spin-up
proceeds faster for a density-maximum fluid than for a
Boussinesq fluid. These reconfirm the trends discussed
earlier.

4. Conclusion

The present numerical results demonstrate the spin-
up process of a stratified, density-maximum fluid (wa-
ter), in which the temperature at the bottom disk is the
density-maximum temperature, TB ¼ Tm.

The meridional flow is asymmetric about the mid-
height plane, z ¼ 0:5, and it is stronger in the lower half
plane ðz < 0:5Þ than in the upper half plane ðz > 0:5Þ.
Spin-up proceeds more rapidly in the lower half plane
than in the upper plane. This stems from the non-uni-
form vertical distribution of density stratification based
on the quadratic q–T relation. The overall spin-up time
for a density-maximum fluid is shorter than for a con-
ventional Boussinesq fluid.

The present numerical results provide baseline flow
data which may be used to examine the stability issues in
the Ekman layers and other regions.
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